Публикации

  1. Gavrilov, A., Seleznev, A., Mukhin, D., Loskutov, E., Feigin, A., & Kurths, J. (2018). Linear dynamical modes as new variables for data-driven ENSO forecast. Climate Dynamics. https://doi.org/10.1007/s00382-018-4255-7

  2. Totz, S., Eliseev, A. V., Petri, S., Flechsig, M., Caesar, L., Petoukhov, V., & Coumou, D. (2018). The dynamical core of the Aeolus 1.0 statistical–dynamical atmosphere model: validation and parameter optimization. Geoscientific Model Development, 11(2), 665–679. https://doi.org/10.5194/gmd-11-665-2018

  3. Mukhin, D., Gavrilov, A., Loskutov, E., Feigin, A., & Kurths, J. (2018). Nonlinear reconstruction of global climate leading modes on decadal scales. Climate Dynamics, 51(5–6), 2301–2310. https://doi.org/10.1007/s00382-017-4013-2

  4. Klinshov, V. V, Kirillov, S., Kurths, J., & Nekorkin, V. I. (2018). Interval stability for complex systems. New Journal of Physics, 20(4), 043040. https://doi.org/10.1088/1367-2630/aab5e6

  5. Maslennikov, O. V., Nekorkin, V. I., & Kurths, J. (2018). Transient chaos in the Lorenz-type map with periodic forcing. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(3), 033107. https://doi.org/10.1063/1.5018265

  6. Volodin, E. M., Mortikov, E. V., Kostrykin, S. V., Galin, V. Y., Lykossov, V. N., Gritsun, A. S., … Emelina, S. V. (2018). Simulation of the modern climate using the INM-CM48 climate model. Russian Journal of Numerical Analysis and Mathematical Modelling, 33(6), 367–374. https://doi.org/10.1515/rnam-2018-0032

  7. Mokhov, I. I., & Smirnov, D. A. (2018). Estimating the Contributions of the Atlantic Multidecadal Oscillation and Variations in the Atmospheric Concentration of Greenhouse Gases to Surface Air Temperature Trends from Observations. Doklady Earth Sciences, 480(1), 602–606. https://doi.org/10.1134/S1028334X18050069

  8. Mokhov, I. I., & Smirnov, D. A. (2018). Contribution of Greenhouse Gas Radiative Forcing and Atlantic Multidecadal Oscillation to Surface Air Temperature Trends. Russian Meteorology and Hydrology, 43(9), 557–564. https://doi.org/10.3103/S1068373918090017

  9. Vorobyeva, V. V., & Volodin, E. M. (2018). Investigation of the Structure and Predictability of the First Mode of Stratospheric Variability Based on the INM RAS Climate Model. Russian Meteorology and Hydrology, 43(11), 737–742. https://doi.org/10.3103/S1068373918110043

  10. Boers, N., Chekroun, M. D., Liu, H., Kondrashov, D., Rousseau, D.-D., Svensson, A., … Ghil, M. (2017). Inverse stochastic–dynamic models for high-resolution Greenland ice core records. Earth System Dynamics, 8(4), 1171–1190. https://doi.org/10.5194/esd-8-1171-2017

  11. Mokhov, I. I., & Smirnov, D. A. (2017). Estimates of the mutual influence of variations in the sea surface temperature in tropical latitudes of the Pacific, Atlantic, and Indian Oceans from long-period data series. Izvestiya, Atmospheric and Oceanic Physics, 53(6), 613–623. https://doi.org/10.1134/S0001433817060081

  12. Smirnov, D. A., Breitenbach, S. F. M., Feulner, G., Lechleitner, F. A., Prufer, K. M., Baldini, J. U. L., … Kurths, J. (2017). A regime shift in the Sun-Climate connection with the end of the Medieval Climate Anomaly. Scientific Reports, 7(1), 11131. https://doi.org/10.1038/s41598-017-11340-8

  13. Mokhov, I. I., Semenov, A. I., Volodin, E. M., & Dembitskaya, M. A. (2017). Changes of cooling near mesopause under global warming from observations and model simulations. Izvestiya, Atmospheric and Oceanic Physics, 53(4), 383–391. https://doi.org/10.1134/S0001433817040090

  14. Loginov, S. V., Eliseev, A. V., & Mokhov, I. I. (2017). Impact of non-Gaussian statistics of atmospheric variables on extreme intramonth anomalies. Izvestiya, Atmospheric and Oceanic Physics, 53(3), 269–278. https://doi.org/10.1134/S0001433817030070

  15. Csigi, M., Kőrösi, A., Bíró, J., Heszberger, Z., Malkov, Y., & Gulyás, A. (2017). Geometric explanation of the rich-club phenomenon in complex networks. Scientific Reports, 7(1), 1730. https://doi.org/10.1038/s41598-017-01824-y

  16. Volodin, E. M., Mortikov, E. V., Kostrykin, S. V., Galin, V. Y., Lykosov, V. N., Gritsun, A. S., … Yakovlev, N. G. (2017). Simulation of modern climate with the new version of the INM RAS climate model. Izvestiya, Atmospheric and Oceanic Physics, 53(2), 142–155. https://doi.org/10.1134/S0001433817020128

  17. Gritsun, A., & Lucarini, V. (2017). Fluctuations, response, and resonances in a simple atmospheric model. Physica D: Nonlinear Phenomena, 349, 62–76. https://doi.org/10.1016/J.PHYSD.2017.02.015

  18. Smirnov, D. A., Marwan, N., Breitenbach, S. F. M., Lechleitner, F., & Kurths, J. (2017). Coping with dating errors in causality estimation. EPL (Europhysics Letters), 117(1), 10004. https://doi.org/10.1209/0295-5075/117/10004

  19. Muryshev, K. E., Eliseev, A. V., Mokhov, I. I., & Timazhev, A. V. (2017). Lead–lag relationships between global mean temperature and the atmospheric CO2 content in dependence of the type and time scale of the forcing. Global and Planetary Change, 148, 29–41. https://doi.org/10.1016/J.GLOPLACHA.2016.11.005

  20. Gritsun, A., & Branstator, G. (2016). Numerical aspects of applying the fluctuation dissipation theorem to study climate system sensitivity to external forcings. Russian Journal of Numerical Analysis and Mathematical Modelling, 31(6), 339–354. https://doi.org/10.1515/rnam-2016-0032

  21. Mokhov, I. I., & Smirnov, D. A. (2016). The trivariate seasonal analysis of couplings between El Niño, North Atlantic Oscillation, and Indian monsoon. Russian Meteorology and Hydrology, 41(11–12), 798–807. https://doi.org/10.3103/S106837391611008X

  22. Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J. (2016). Method for reconstructing nonlinear modes with adaptive structure from multidimensional data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(12), 123101. https://doi.org/10.1063/1.4968852

  23. Kondrashov, D., Chekroun, M. D., & Ghil, M. (2016). Comment on “Nonparametric forecasting of low-dimensional dynamical systems .” Physical Review E, 93(3), 36201. https://doi.org/10.1103/PhysRevE.93.036201

  24. Malkov, Y. A., & Ponomarenko, A. (2016). Growing Homophilic Networks Are Natural Navigable Small Worlds. PLOS ONE, 11(6), e0158162. https://doi.org/10.1371/journal.pone.0158162

  25. Mokhov, I. I., & Smirnov, D. A. (2016). Relation between the variations in the global surface temperature, El Niño/La Niña phenomena, and the Atlantic Multidecadal Oscillation. Doklady Earth Sciences, 467(2), 384–388. https://doi.org/10.1134/S1028334X16040115

  26. Levanova, T. A., Kazakov, A. O., Osipov, G. V., & Kurths, J. (2016). Dynamics of ensemble of inhibitory coupled Rulkov maps. European Physical Journal: Special Topics, 225(1), 147–157. https://doi.org/10.1140/epjst/e2016-02623-x

  27. Klinshov, V. V, Nekorkin, V. I., & Kurths, J. (2016). Stability threshold approach for complex dynamical systems. New Journal of Physics, 18(1), 13004. https://doi.org/10.1088/1367-2630/18/1/013004

  28. Stolbova, V., Surovyatkina, E., Bookhagen, B., & Kurths, J. (2016, April 28). Tipping elements of the Indian monsoon: Prediction of onset and withdrawal. Geophysical Research Letters, pp. 3982–3990. https://doi.org/10.1002/2016GL068392

  29. Franović, I., Kostić, S., Perc, M., Klinshov, V., Nekorkin, V., & Kurths, J. (2016). Phase response curves for models of earthquake fault dynamics. Chaos, 26(6), 63105. https://doi.org/10.1063/1.4953471

  30. Kryukov, A. K., Petrov, V. S., Osipov, G. V., & Kurths, J. (2015). Multistability of synchronous regimes in rotator ensembles. Chaos, 25(12), 123121. https://doi.org/10.1063/1.4938181

  31. Sitnov, S. A., & Mokhov, I. I. (2015). Spatial distribution of total column ozone and total column water vapor over European Russia during the spring and summer atmospheric blocks in 2010. In O. A. Romanovskii (Ed.), XXI International Symposium Atmospheric and Ocean Optics. Atmospheric Physics (p. 968059). International Society for Optics and Photonics. https://doi.org/10.1117/12.2197503

  32. Sidak, E. V., Smirnov, D. A., & Bezruchko, B. P. (2015). Estimation of Characteristics of Delayed Coupling Between Stochastic Oscillators from the Observed Phase Dynamics. Radiophysics and Quantum Electronics, 58(7), 529–540. https://doi.org/10.1007/s11141-015-9626-x

  33. Denisov, S. N., Eliseev, a. V., Mokhov, I. I., & Arzhanov, M. M. (2015). Model estimates of global and regional atmospheric methane emissions of wetland ecosystems. Izvestiya, Atmospheric and Oceanic Physics, 51(5), 482–487. https://doi.org/10.1134/S0001433815050035

  34. Vannitsem, S., Demaeyer, J., De Cruz, L., & Ghil, M. (2015). Low-frequency variability and heat transport in a low-order nonlinear coupled ocean–atmosphere model. Physica D: Nonlinear Phenomena, 309, 71–85. https://doi.org/10.1016/j.physd.2015.07.006

  35. Smirnov, D. A., & Mokhov, I. I. (2015). Relating Granger causality to long-term causal effects. Physical Review E, 92(4), 42138. https://doi.org/10.1103/PhysRevE.92.042138

  36. Mokhov, I. I., & Smirnov, D. A. (2015). Estimating the coupling between variations in the atlantic multidecadal oscillation and the El Niño/Southern Oscillation. Izvestiya, Atmospheric and Oceanic Physics, 51(5), 472–481. https://doi.org/10.1134/S0001433815050084

  37. Mukhin, D., Loskutov, E., Mukhina, A., Feigin, A., Zaliapin, I., & Ghil, M. (2015). Predicting Critical Transitions in ENSO Models. Part I: Methodology and Simple Models with Memory. Journal of Climate, 28(5), 1940–1961. https://doi.org/10.1175/JCLI-D-14-00239.1

  38. Maslennikov, O. V., Nekorkin, V. I., & Kurths, J. (2015). Basin stability for burst synchronization in small-world networks of chaotic slow-fast oscillators. Physical Review E, 92(4), 42803. https://doi.org/10.1103/PhysRevE.92.042803

  39. Muryshev, K. E., Eliseev, A. V, Mokhov, I. I., & Timazhev, A. V. (2015). A lag between temperature and atmospheric CO2 concentration based on a simple coupled model of climate and the carbon cycle. Doklady Earth Sciences, 463(2), 863–867. https://doi.org/10.1134/S1028334X15080231

  40. Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. https://doi.org/10.1038/srep15510

  41. Mukhin, D., Kondrashov, D., Loskutov, E., Gavrilov, A., Feigin, A., & Ghil, M. (2015). Predicting Critical Transitions in ENSO models. Part II: Spatially Dependent Models. Journal of Climate, 28(5), 1962–1976. https://doi.org/10.1175/JCLI-D-14-00240.1

  42. Smirnov, D. A. (2014). Quantification of causal couplings via dynamical effects: A unifying perspective. Physical Review E, 90(6), 62921. https://doi.org/10.1103/PhysRevE.90.062921

  43. Sidak, E. V., Smirnov, D. A., & Bezruchko, B. P. (2014). Estimation of the coupling delay time from time series of self-oscillatory systems with allowance for the autocorrelation function of phase noise. Technical Physics Letters, 40(10), 934–936. https://doi.org/10.1134/S1063785014100289